The Eagle Rock Child Care Center is a welcome addition to Eagle Rock Community Park, a Los Angeles Department of Recreation and Parks facility near Pasadena, California. The local community lobbied actively for the facility due to the convenience of its location and its family oriented programs.

Located on a bend on Eagle Vista Drive, the 5,000 square-foot facility sits only 100 yards from a famous neighbor, a nationally registered gymnasium designed in 1953 by Richard Neutra. The Center has two large classrooms and bathrooms, a staff office/workroom, a director’s office, conference room, isolation room, miscellaneous storage and mechanical space, as well as covered play areas and a fenced playground.

The placement of the Child Care Center was carefully considered – close to a large existing parking lot and far enough away from the gym to give it a wide berth. Our project pays homage to the Neutra building with a number of subtle nods such as thin roofs, exposed steel detailing, industrial materials and large operable glazed panels that open the classroom to the adjacent sheltered patios.

Our goal for the project was to create an exceptionally functional and enjoyable environment for the local children, teachers, and parents. The large volumes of the classrooms, the exposed white ducting set against the exposed blue painted ceiling, clerestory windows, playful, colorful forms are meant to go beyond the program given to us. Our hope is that the Eagle Rock Child Care Center will inspire.

ARCHITECT:
Kanner Architects
10924 Le Conte Avenue
Los Angeles, CA 90024
www.kannerarch.com
Stephen H. Kanner, FAIA
Principal

STRUCTURAL ENGINEER:
Warling and Associates

GENERAL CONTRACTOR:
Povac Investment, Inc.

MASONRY CONTRACTOR:
Povac Investment, Inc.

BLOCK PRODUCER:
Angelas Block Company, Inc.

OWNER:
City of Los Angeles, Department of Recreation and Parks
South Belmont Park Comfort Station is a new structure of multiple accommodation restrooms, two family restrooms, and shower and dressing facilities for Mission Beach in San Diego. The site is directly adjacent to the boardwalk, beach and the 1925 “Giant Dipper” roller coaster, part of the original amusement park development by John D. Spreckels, the sugar magnate.

Community design review, input and approval was a major part of the planning and design process, including the Subcommittee for Removal of Architectural Barriers (SCRAB), an advocacy group for the disabled. Public art is incorporated in the design as well. The building design is informed by the site, history and the surroundings, and by functional, safety and maintenance requirements.

Because of their durability, concrete masonry units were the natural choice for the project. Being sited on the beach front, challenges of high intensity sun, wind driven sand, and corrosive elements all needed to be addressed. Concrete masonry walls constructed with epoxy coated rebar, not only addresses these issues, but also provides protection against possible vandalism. Additionally, concrete masonry block’s adaptability allowed the project to be built entirely with CMU walls, varying scale and proportion by alternating split face, burnished, stucco finished and unfinished standard concrete masonry units.
The design solution proposed for this new high school synthesizes the many planning issues that define the nature of this challenging project. These issues originated from a comprehensive site analysis, comments and observations from the client’s Design Task Force, and additional input from representatives of both the San Marcos Unified School District and the City of San Marcos.

Set in the hills formerly occupied by the Hollandia Dairy, the design team and the District had some interesting challenges to meet when planning for the new Mission Hills High School. The sloping topography of this site indicates that a unique and creative design solution to the campus would definitely be required. With that in mind, and the fact that the site is over 10 acres below the size recommended by the California Department of Education for a campus to accommodate a student population of 2,400, the architectural firm worked to achieve a design for a comprehensive high school that efficiently utilized the acreage and aesthetically enhanced and blended with rural surroundings.

The buildings utilize 8-inch, 12-inch and 16-inch thick masonry walls. The gymnasium utilizes two, 2 foot 8 inch by 3 foot 4 inch masonry pilasters up to 42 feet tall with a full height steel column at the core to facilitate anchorage to the roof trusses. Gym pilasters support steel trusses that clear span more than 140 feet. Regular strength (f’m 1,500 psi) and high strength (f’m 2,500 psi) masonry assemblies are used on the project. The building lateral systems consist of masonry shear walls, concrete shear walls and steel braced frames. Masonry retaining walls on the site are up to 26 feet tall and masonry lintels span up to 44 feet.

MISSION HILLS HIGH SCHOOL
SAN MARCOS, CALIFORNIA

The design solution proposed for this new high school synthesizes the many planning issues that define the nature of this challenging project. These issues originated from a comprehensive site analysis, comments and observations from the client’s Design Task Force, and additional input from representatives of both the San Marcos Unified School District and the City of San Marcos.

Set in the hills formerly occupied by the Hollandia Dairy, the design team and the District had some interesting challenges to meet when planning for the new Mission Hills High School. The sloping topography of this site indicates that a unique and creative design solution to the campus would definitely be required. With that in mind, and the fact that the site is over 10 acres below the size recommended by the California Department of Education for a campus to accommodate a student population of 2,400, the architectural firm worked to achieve a design for a comprehensive high school that efficiently utilized the acreage and aesthetically enhanced and blended with rural surroundings.

The buildings utilize 8-inch, 12-inch and 16-inch thick masonry walls. The gymnasium utilizes two, 2 foot 8 inch by 3 foot 4 inch masonry pilasters up to 42 feet tall with a full height steel column at the core to facilitate anchorage to the roof trusses. Gym pilasters support steel trusses that clear span more than 140 feet. Regular strength (f’m 1,500 psi) and high strength (f’m 2,500 psi) masonry assemblies are used on the project. The building lateral systems consist of masonry shear walls, concrete shear walls and steel braced frames. Masonry retaining walls on the site are up to 26 feet tall and masonry lintels span up to 44 feet.
Valley Resort Management selected AXIS to redesign and expand the Quail Lodge Golf Clubhouse’s existing spaces, while maintaining the structure’s legendary charm and character. The remodeling included updating existing amenities, as well as adding a new restaurant, banquet kitchen, patio spaces, and wellness center, within the existing structure. The challenge was to design, document, permit and complete construction in twelve months while maintaining golf operations.

On the building’s exterior, the visually heavy, cantilevered decks were grounded by the addition of creamy Carmel Valley limestone walls, creating a more inviting and pedestrian-friendly architecture. New concrete masonry structures included patios with fireplaces, retaining walls that defined spaces within the landscape architecture, and enclosures for both the golf starter’s area and service yard. The existing lower level structure of the clubhouse consisted of concrete masonry walls and columns. These were covered with a limestone veneer, adding warmth to the feel of the building.

Clubhouse interiors embrace guests with a warm, comforting aura that evokes an understated elegance. Golden-hued, end-grain hemlock wood floors, combined with boar hide and leather accents, create a rustic ambiance. Bathrooms feature hammered copper sinks, loose-hanging mirrors and simple wrought-iron sconces. Rough-sawn exposed timber and oxidized steel in a rich rust color emphasize structural elements; textural materials such as hand plastered walls and natural fir baseboards, trim and accents underscore this welcoming atmosphere.
A new corporate headquarters building was recently designed and constructed in less than eight months. The building was started in July 2002 and was completed in January 2003. The fast track design and construction was paramount to the project for funding reasons. The speed of erection of the walls, beginning immediately after the concrete slab cured, enhanced the construction schedule.

This single story, 9,183 square-foot building is a compilation of the “1900’s” industrial architectural vocabulary prominent in the immediate area, and reflects the years the owners have successfully been in business. The design intent was achieved by placing bold colored stucco over concrete masonry units and by using partial corrugated metal siding under lattices and steel rod support canopies, and wire window glass. The 1 x 6 formed roughcast concrete base and lintels mimic historical workmanship of the target period. The circular entry tower, floating canopies and vine-covered trellises soften the rigid corners of the concrete masonry units of the main walls. This building style will be the prototype for the Ninth Street Development Area, the newest redevelopment blocks for the revitalization of downtown.

Concrete masonry was chosen for the main structure due to its inherent properties of modular construction, sound absorption and the variety of surfaces available. The sound reducing capabilities were critical due to an adjacent railroad and highway, which generate excessive noise and vibration. The variety of concrete masonry surfaces from smooth to rough, allowed the design to duplicate images from the early 1900’s construction techniques used in the surrounding area and complete the design intent.

ARCHITECT
Pacific Design Associates, Inc.
1218 K Street
Modesto, CA 95354

Donald W. Phillips, AIA
Principal

STRUCTURAL ENGINEER:
Mozaffari Engineering

GENERAL CONTRACTOR:
Acme Construction Company, Inc.

MASONRY CONTRACTOR:
Ray’s Masonry

BLOCK PRODUCER:
Basalite Concrete Products, LLC

OWNER:
J S West & Companies
The owner wanted a 2-story building built with more durable walls than a building built with stucco coated wood frame construction. Both concrete tilt-up and concrete masonry were considered. The site was tight and the building was going to be split into three buildings; thus concrete tilt-up was going to be tough to construct. CMU was chosen because of both the ease of construction on such a tight site and its ability to provide architectural features.

A mixture of split face and fluted units allowed “levels” to be created in the structure breaking up the monotony of 25’ - 4” tall walls giving a more comfortable feeling when the building is approached. Once you are up to the building, the curved walls give a more spacious feel in the courtyard between the structures. The curved courtyard roof covering accents the curved walls of the building. The curved walls were easily achieved by using 8” long units at the corner. No other durable building material would allow these features to be incorporated into the design.

ENGINEERING FIRM
Gerald Mele & Associates, Inc.
7337 N. First, Suite 100
Fresno, CA 93720-2926
Gerald A. Mele, PE. SE.
Engineer of Record

PROJECT DESIGNER
Gerald Mele & Associates, Inc.
Rob A. Sanders

GENERAL CONTRACTOR:
Fresno Supreme, Inc.

MASONRY CONTRACTOR:
McCureley and Day Masonry, Inc.

BLOCK PRODUCER:
Blocklite

OWNER:
Fresno Supreme, Inc.
The PDD Commercial Building in San Luis Obispo, California, is a 40,400 square-foot commercial/retail development located in an industrial park behind two large volume grocery stores. The 500' - 0” long x 59' - 0” deep building actually spans six separate properties consisting of five 80' - 0” wide lots and one 116' - 0” corner lot. The design challenge was to create a completely separate building on each property and still make the group of buildings read as one project.

A typical 80' - 0” lot can divide into two separate lease spaces each with a two-story retail/commercial area adjacent to two floors of office/retail space. All the tenants share a common parking lot. The building’s tenant mix has created a small “design center”.

Masonry was the obvious choice for a building that sits on six different lots and requires fire rated “zero lot line” walls at each property line. The building also has a relatively flat front facade and masonry allowed us to undulate the exterior very efficiently both in plan and in elevation on a very tight site. The tan colored, vertically scored split faced block “columns”, combined with the forest green standing seam metal canopies help to define the separate tenant spaces and gives the long building a comfortable, human scale. A tan colored “combed” block is used on all of the recessed surfaces. The smoother face of the combed block facilitates the ease of attaching the metal canopy roofs to the wall, while still giving the building face a rich texture.
Profiles in Architecture

ARCHITECTURAL CONCRETE MASONRY

Concrete Masonry Units are dimensionally and aesthetically right for ANY of your existing or future designs. CMU’s can be integrally pigmented and textured to meet a wide range of client and project demands. CMU’s are design flexible, versatile, noncombustible, durable, economical and locally available.

Funding for the production and publication of the CMU Profiles in Architecture is provided by:

- AIR VOL BLOCK, INC.
 (805) 543-1314
 San Luis Obispo, CA 93401

- ANGELUS BLOCK COMPANY, INC.
 (818) 767-8576
 Fontana, CA 92335

- BASALITE CONCRETE PRODUCTS, LLC.
 (707) 678-1901
 Dixon, CA 95620

- BLOCKLITE
 (559) 896-0753
 Selma, CA 93662

- CALSTONE CO., INC.
 (408) 984-8800
 Galt, CA 95632

- CALIFORNIA CEMENT PROMOTION COUNCIL
 (714) 694-0800
 Yorba Linda, CA 92887

- CEMEX
 (510) 234-3615
 Richmond, CA 94804

- DESERT BLOCK COMPANY, INC.
 (661) 824-2624
 Mojave, CA 93501

- OLDCASTLE APG WEST, INC./SIERRA BUILDING PRODUCTS
 (602) 352-3500
 Fontana, CA 92337

- ORCO BLOCK COMPANY, INC.
 (800) 473-6726
 Banning, CA 92220

- RCP BLOCK & BRICK, INC.
 (619) 460-7250
 Lemon Grove, CA 91946

- RINKER MATERIALS
 (702) 643-1332
 Las Vegas, NV 89115

Concrete Masonry Association of California and Nevada (CMACN) a nonprofit professional organization established in October 1977, is committed to strengthening the masonry industry in California and Nevada by providing:

- Technical information on concrete masonry for design professionals.

- Protect and advance the interests of the concrete masonry industry.

- Develop new and existing markets for concrete masonry products.

- Coordinate members’ efforts in solving common challenges within the masonry industry.

Concrete Masonry Association of California and Nevada
6060 Sunrise Vista Drive, Suite 1990
Citrus Heights, CA 95610-7004
Tel: (916) 722-1700
Fax: (916) 722-1819
Email: info@cmacn.org
Web Site: www.cmacn.org

For further information contact us at:
Concrete Masonry Association of California and Nevada
6060 Sunrise Vista Drive, Suite 1990
Citrus Heights, CA 95610-7004
Tel: (916) 722-1700
Fax: (916) 722-1819
Email: info@cmacn.org
Web Site: www.cmacn.org

2005 CMACN/AIACC
Concrete Masonry Design Awards
Call for Entries

Please mark your calendar for our “Call-For-Entry” brochure to be received by mail in early January 2005. You do not have to be a member of AIA to be included in this prestigious competition. Requests for submittal binders will also be downloadable from our website in January at www.cmacn.org or can be obtained by calling the CMACN office at (916) 722-1700 or by e-mail at info@cmacn.org.

Cost: $100

Tentative Schedule:

- Last date to request submittal binders: March 31, 2005
- Last date for receipt of completed submittal binders: April 30, 2005
- Concrete Masonry Design Awards Banquet: October 2005

Visit our Web Site at www.cmacn.org

October 2004