ST. JOHN THE BAPTIST EPISCOPAL CHURCH
LODI, CALIFORNIA

When the congregation at St. John’s Episcopal Church began to outgrow their 100 year-old historic chapel in downtown Lodi, they turned to architect Timothy Mattheis, asking him to design a new sanctuary, a ‘heritage building’ that would serve them for the next hundred years. With this goal in mind, the design team focused on creating a building with a ‘timeless’ style, clearly referencing historic architecture, while utilizing modern building materials and details. The design of the new building incorporates contemporary interpretations of Gothic architectural elements such as buttresses, high-pitched roofs and Gothic arches. The 300 seat sanctuary is defined by a series of elegant steel trusses and rusticated concrete masonry buttresses. Large windows and horizontal sunshades complete the sanctuary’s envelope.

To meet the church’s expectation for quality in design, building material selection was as important a decision as architectural style. The design team searched for building materials that were honest, providing the building both aesthetic and structural strength. Utilizing the Castle Rock Designer Series Block by a local block manufacturer for the concrete masonry buttresses and bearing walls allowed the building’s structural system to contribute to the building’s appearance. This split-faced shadow block added visual and tactile richness to the building, while functioning as the building’s gravity and lateral support.

ARCHITECT:
Wenell Mattheis Bowe, Inc.
246 E. Main Street
Stockton, CA 95202
Timothy Mattheis
Principal Architect
Doug Davis
Staff Architect

STRUCTURAL ENGINEER:
Ingraham DeJesse Associates, Inc.

GENERAL CONTRACTOR:
Sundt Construction Northern California

MASON:
John D. Wait Masonry

OWNER:
St. John the Baptist Episcopal Church
Father Richard Matters, Rector

Photography: Bob Canfield
Completed in 2003, the Casa Blanca Family Learning Center is a 10,000-square foot state-of-the-art library. This is the first phase of a 4.5 acre development planned by the City of Riverside, which is master planned to include an Energy Resource and Customer Service Center for Riverside Public Utilities and a Community Arts Center. The three building complex is designed around a public plaza and water-wise garden. A photovoltaic generating station will cover a portion of the parking lot.

In addition to providing traditional circulating library materials, the Learning Center serves as a Community Center – a place for meetings, exhibitions, and musical and theatrical performances. The building provides classroom and instructional space to support programs of Riverside City College, including tutoring of elementary and high school students, English as a second language, and computer training. The Learning Center is designed so that the meeting and instructional facilities can function separately from the library.

All exterior walls of the building are constructed of concrete masonry units. The trellis piers and site walls are also constructed of CMU. Concrete masonry units were selected for their scale and appearance, seismic integrity, durability and energy efficiency. The building outperforms Title 24 by 30%. The Casa Blanca Family Learning Center received a $50,000 grant from Riverside Public Utilities for its energy efficient design. The adjacent Energy Resource and Customer Service Center will be constructed of similar concrete masonry units. Precision and burnished CMU are used for the building walls. Split-faced concrete masonry units are used for the site walls.

ARCHITECT:
JLP Architects, Inc.
3100 Airway Avenue, Suite 137
Costa Mesa, CA 92626
James L. Pirdy, AIA
Principal

STRUCTURAL ENGINEER:
Ishler Design and Engineering Associates

GENERAL CONTRACTOR:
DKS Construction, Inc.

MASON:
Kretschmar & Smith, Inc.

OWNER:
Riverside Public Library
Mercy High School is a 50-year old private Catholic girls school, located in the western portion of San Francisco about one mile from the Ocean. The school’s requirements for a building addition were threefold: a gymnasium with a full-size basketball court, regulation volleyball courts, four practice basketball courts and bleachers for 600-700 spectators, along with locker rooms, a weight room, offices, storage room and a classroom; a space large enough and appropriate for the celebration of Mass, and a building that was energy efficient and environmentally sensitive, along with blending into the established campus and neighborhood.

The design solution was achieved by using rose colored concrete masonry units with split-faced burgundy accent bands as the primary building material, which is similar in color and texture to the existing buildings. Concrete masonry was also selected for its ability to achieve tall slender walls in this seismic zone four, which is only three miles from the San Andreas Fault. CMU afforded the designer the ability to create curving surfaces in both the horizontal and vertical planes. This led to the strong cylindrical Lobby shape, which reflects the concave shape and semi-circular pediment supported by columns at the classroom building entry and the curved roof plane of the Auditorium.

The 100-foot wide by 34-foot high, north facing glass wall is the keystone to creating an energy efficient structure, as well as being a significant design element. There are no other windows in the gym proper, so the “wall of light” contrasts very strongly with the masonry walls and allows for natural, glare-free indirect light that illuminates the whole interior completely during the day.

The sensitivity to the neighborhood begins with the curving roof, which starts low at the south side of the property, closest to the homes and rises to a maximum height of 40 feet toward the north, where the neighboring homes are further away, to form a light scoop. All mechanical equipment is located on the two lower roofs and is enclosed by screening so the high roof is a large uninterrupted sloping plane, which helps to minimize the impact of the neighborhood.
Rolling Hills Christian Church, a non-denominational Christian Church, was organized in 1995 in El Dorado Hills. In 1998, after outgrowing their temporary home in the local community serviced building, property was secured on the edge of town, and planning of a new facility began.

The solution is a mixed occupancy building of 23,900 sq. ft., centered on a 550 seat multi-use auditorium providing both assembly and sports functions. Children’s classrooms, a small kitchen, and administration facilities complete the plan. The architectural form for this new church was established in relation to a large business park to the south and a vast area to the west slated for residential development, and in context to the dramatic setting in the rolling terrain of El Dorado Hills.

Concrete unit masonry was selected as the predominant building material, not only because of its unique ability to establish human scale and to convey warmth, but also because it allowed the architect to create the “rolling hills” image in an economical way. The curved roof form grew from the local topography, as well as the church’s name.

The church’s dynamic outreach philosophy is reflected well in this design. Although serving as their primary worship center, the building is open for many other activities including sporting events, concerts, classes and seminars.

Through the creative use of concrete unit masonry, this building has given the church not only a home, but also an identity.

ARCHITECT:
TPC Architects, Inc.
8680 Greenback Lane, Suite 200
Orangevale, CA 95662
Daniel M. Kinnoin, AIA, NCARB
Principal
Marty J. Reimers, AIA
Design Architect

STRUCTURAL ENGINEER:
Bevier Engineering, Inc.

GENERAL CONTRACTOR:
John P. Otto, Inc.

MASON:
PTS Masonry

OWNER:
Rolling Hills Christian Church

Photography: Cathy Kelly
COUNTY OF SONOMA SHERIFF’S HEADQUARTERS & REGIONAL DISPATCH CENTER
SANTA ROSA, CALIFORNIA

The project team provided planning, programming, site analysis, design and construction administration services for the new 61,200 square foot Sheriff’s Headquarters facility that houses the central administration and law enforcement activities of the Sonoma County Sheriff’s Department. Included within the building is a modern 4,000 square foot 911/Dispatch Center. The building is an essential facility designed to remain operational following natural disasters. The Dispatch Center forms a central hub and is served by a flexible electronic, data and power infrastructure. The building has been designed as a reduced-stress work environment with adjustable lighting, high ceilings, natural light, distant views, optimized workstation layouts and clear layers of security. In addition, the building includes 12,600 square feet of undeveloped space designated for future growth of the Sheriff’s Department and Dispatch Center.

The primary building materials include concrete masonry units, steel framing, aluminum curtain walls, glass and steel siding. Concrete masonry units were selected for their structural qualities, economy, durability, finish appearance and symbolic characteristics. Structurally the masonry walls form a system of shear panels that resist lateral forces. The exposed CMU is used both as an exterior and interior finish material. These walls resist wear, require little maintenance and present a pleasing natural appearance. Substantial cost reductions were realized through the use of this single material that simultaneously provides structural support, forms the exterior skin and creates the interior finish. The split faced exterior CMU walls impart a strong civic character to the building, while division of the masonry into exploded planar elements and penetrations allows the building to have an open quality. Both of these elements, strength and openness, reflect qualities of the modern mission of the Sheriff’s Department.

ARCHITECT:
RossDrulisCusenbery Architecture, Inc.
190 West Napa Street
Sonoma, CA 95476
Michael B. Ross, AIA
Charles R. Drulis, AIA
Mallory Scott Cusenbery, AIA
Mark Zall, AIA
Brad Johnson, AIA
Herb Roth, AIA
Roth & Sheppard Architects

STRUCTURAL ENGINEER:
DASSE Design, Inc.

GENERAL CONTRACTOR:
Athrop Construction

MASON:
S. W. Metz Masonry Specialists, Inc.

OWNER:
County of Sonoma,
Sonoma County General Services

Photography: Sharon Risedorph, Risedorph Photography
Jennifer J. Pechacek, RossDrulisCusenbery
M. GORDON CLARKE FIELD HOUSE/UNIVERSITY UNION, CAL STATE UNIVERSITY, SAN MARCOS

SAN MARCOS, CALIFORNIA

M. Gordon Clarke Field House/University Union is the student/faculty and staff activity center and gathering place for this relatively new university campus. The 34,000 square foot building houses a conference center with kitchen, weight room, multipurpose/aerobics room, extensive locker facilities, sports medicine, student lounge areas, convenience store and athletic department offices. The multiuse nature of the building is celebrated by creating a “village” that surrounds a central common gathering area. Outdoor patios of varying character are incorporated on three sides of the building, and take advantage of the outstanding views from the site.

The design challenge was to create an open, mixed-use facility that would accommodate the many needs of students and faculty, while taking advantage of the panoramic views afforded by the campus’s hilltop setting. The project needed to take into consideration room for future building expansion, while maintaining a lasting visual identity that would communicate a sense of centrality and belonging within the local environment. The idea was to let the programmatic function of each individual building component determine its own unique architectural manifestation, tying these spaces together around the central “spine.”

Concrete masonry and exposed steel were incorporated in the exterior arcade to create a sense of permanence and play off design elements in other existing campus structures. For this project, 8-inch and 12-inch sourdough medium weight split-face and precision masonry units were selected, with the color matching native soils. Concrete masonry was used to give the necessary leeway for design, strength and durability and for aesthetic considerations.

ARCHITECT:
Robbins Jorgensen Christopher
2800 Lafayette
Newport Beach, CA 92663
Roberta W. Jorgensen, FAIA
Principal in Charge
James K. Robbins, AIA
Design Principal
Harold R. Baker, G. C. CSI
Project Manager
Kristine Steffen, IIDA, CID
Interior Designer

STRUCTURAL ENGINEER:
Flores Lund Consultants

GENERAL CONTRACTOR:
Edge Development, Inc.

MASON:
Kretschmar & Smith, Inc.

OWNER:
California State University, San Marcos
The Gangi Development office building is located on a triangular 30,000 square foot property directly adjacent to the 210 highway, with a floor area of 10,000 square feet. The offices are housed in two, two-story masonry concrete block bar elements, joined by a mahogany wood curtain wall bridge acting as entry lobbies and vertical circulation. In combination these building elements form two separate entry courts. On the east/public side, the hard court seeks to evoke the memory of a Roman piazza with a rotunda that accents the entry and helps its connection to the street. On the west/private side, the soft court, with landscaping, trees and boulders create the social environment for the building occupants.

This project would not have been possible without the use of concrete masonry. The strength of the material allowed for 4-foot shear walls, between tall window openings, versus 6 and one half-foot wood framed walls. Costs were reduced, as the structure was the finished product. The building was designed to block dimensions; therefore no block cutting was necessary. This allowed the labor costs to be kept at a minimum as well.

ARCHITECT:
Gangi Architects
239 E. Palm Avenue
Burbank, CA 91502
Panos Koulermos, FAIA
Mark Gangi, AIA

Design Team:
Frank Gallo AIA
Harry Christidis
Chi Ja Ling

STRUCTURAL ENGINEER:
Bhupesh Parikh

GENERAL CONTRACTOR:
Gangi Builders, Inc.

MASON:
Gangi Builders, Inc.

PREVIOUS OWNER:
Gangi Development, Inc.
Concrete Masonry Units are dimensionally and aesthetically right for ANY of your existing or future designs. CMUs can be integrally pigmented and textured to meet a wide range of client and project demands. CMUs are design flexible, versatile, noncombustible, durable, economical and locally available.

Funding for the production and publication of the CMU Profiles in Architecture is provided by:

AIR VOL BLOCK, INC.
(805) 543-1314
San Luis Obispo, CA 93401

CALIFORNIA CEMENT PROMOTION COUNCIL
(714) 694-0800
Yorba Linda, CA 92877

ANGELUS BLOCK COMPANY, INC.
(818) 767-8576
Fontana, CA 92335
Indio, CA 92202
Montebello, CA 90640
Orange, CA 92668
Oxnard, CA 93030
Rialto, CA 92316
Sun Valley, CA 91352

CEMEX
(510) 234-3615
Richmond, CA 94804
(909) 974-5556
Ontario, CA 91764

DESERT BLOCK CO., INC.
(661) 824-2624
Mojave, CA 93501

ORCO BLOCK CO., INC.
(800) 473-6726
Banning, CA 92220
Oceanside, CA 92056
Riverside, CA 92509
Romoland, CA 92585
Stanton CA 90680

R C P BLOCK & BRICK, INC.
(619) 460-7250
Lemon Grove, CA 91946

Concrete Masonry Association of California and Nevada (CMACN), a nonprofit professional organization established in October 1977, is committed to strengthening the masonry industry in California and Nevada by providing:

- Technical information on concrete masonry for design professionals.
- Protect and advance the interests of the concrete masonry industry.
- Develop new and existing markets for concrete masonry products.
- Coordinate members’ efforts in solving common challenges within the masonry industry.

For further information contact us at:
Concrete Masonry Association of California and Nevada
6060 Sunrise Vista Drive, Suite 190
Citrus Heights, CA 95610

Tel: (916) 722-1700
Fax: (916) 722-1819

Email: info@cmacn.org
Web Site: www.cmacn.org

APRIL 2004